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ABSTRACT

We study the mod p homology of the classifying space of the gauge group
associated with the principal Sp(n) bundle over the four-sphere using the
Serre spectral sequence for the evaluation fibration.

1. Introduction

Let G be a compact, connected simple Lie group with the classifying space BG
and let P, be the principal bundle over S* classified by the map S* — BG of de-
gree k € Z. Let G,.(G) denote the (full) gauge group of bundle automorphisms on
Py, that is, G-equivariant self maps of P; covering the identity map of S%. The
gauge group G, (G) acts freely on the space of all G-equivariant maps from Py to
EG, Map(Py, EG), and its orbit space is given by the k-component of the space
of maps from S* to BG, Map.(S*, BG). Since Map(Py, EG) is contractible,
the classifying space of Gy (G) is homotopy equivalent to Mapi(S*, BG). Simi-
larly, if G2(G) is the based gauge group which consists of base point preserving
automorphisms on Py, the classifying space of G}(G) is homotopy equivalent to
Q3G [2]. That is, we have

BGi(G) ~ Mapi(S*, BG), BGYG) ~ QG.
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Let Sp(n) denote the symplectic group, that is, the group of n x n quater-
nionic unitary matrices. Many works consider classifying spaces of gauge groups
associated with principal Sp(1) bundles [1, 9, 11]. In this paper we study the
mod p homology of the classifying space of the gauge group associated with
the principal Sp(n) bundle over S* using the Serre spectral sequence for the
evaluation fibration.

ACKNOWLEDGEMENT: We would like to thank Fred Cohen and Mamoru
Mimura for their suggestions and valuable comments.

2. Homology of BG!(Sp(n))

Let E(z) be the exterior algebra on z and I'(z) be the divided power Hopf
algebra on  which is free on generators ;(z) with the product v;(z)y;(z) =
(i’;j)%ﬂ- (z) and with coproduct A(y,(z)) = 31y Tn—i(T)®7i(z). For a (n+1)-
fold loop space, there are homology operations,

Qi(p—1)5 Hq(Q"+1X;Fp) — Hpq+i(p—1)(Qn+1X;Fp),

defined for 0 < ¢ < n when p =2 and for 0 <i < n, i = q for mod 2 when p
is an odd prime, which is natural for a (n + 1)-fold loop space. Let Q¢ be the
iterated operation @, - - - @; (a times) and g be the mod p Bockstein operation.
We refer to [7] for the condensed treatment of these homology operations. Since
n3(G) = Z for a compact, connected simple Lie group G, mo(2*G) = Z. Let
Q3G be the zero component of °G and X, be the space X localized at the
prime p. Note that Q3G ~ Q3G for any k € Z.

To get the mod p homology of BGS(Sp(n)), we compute H,(Q3Sp(n);F,).
For the computation we need the following result, which was conjectured by
Choi and Yoon [6] and proved by Lin [10].

THEOREM 2.1: The Eilenberg -Moore spectral sequences for the path loop fi-
brations converging to the mod p (co)homology of the double and the triple
loop spaces of any simply connected finite H-space collapse at the Es-term.

Hence by [8, Proposition 2.8], we have the following coalgebra isomorphism:
TorII'(QG;E",,)(IFme) = H*(Q2G§Fp)v
TorH'(QQG;F,,) (FIH]FP) = H*(QaG; Fp)

Throughout this paper, the subscript of an element always means the degree
of an element; for example, the degree of a; is i.
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THEOREM 2.2: Let p be an odd prime. Then as an algebra, H,(BG§(Sp(n)); F,)
is isomorphic to

Fo [Q%p—1)(Q@2(p-1)[1] ¥ [-P)) 1 a > 0]
© Fp[Qg(p—l)(u2i—2) :a>0,1<i<2n~1,i0dd,i Z 0modp]

2n —1
® E(Q;_15Qg?pl_1)“2i—2 ra,b >0, [

] <i<2n—1,i0dd,i % 0modp)
2n—-1

®F, [ﬁQZ_lﬂQg(p_l)UQi_z ta,b> 0,[
2n—1

] <i<2n-1,i0dd,i # 0modp|

® E( ;_ng(p_l)ngi_3 ta,b>0, [ ] <i<2n-1,i=0modp)
2n—1

p

®Fp[ﬂngng(p_l)v2pi_3 ta,b >0, [ ] <1< 2n-—1,i =0modp].

Proof: Recall the following homology:
H*(Sp(n); Fp) & E(ugi-1:1 <1< n),

_ 2t —1
P(ugimy) = (1) 1)/2< a )U4i—l+2a(P_1)'

Consider the Eilenberg- Moore spectral sequence converging to H*(Q2Sp(n);F,)

with
E2 > TOrHt (Sp(n);Fp) (Fp ) ]Fp)

= TOTE(u4,-_1:1§i§n) (]FP’]FP)

= [y o 1<i <n),
where ¢4;-2 = o(u4i—1). Since the Es-term is concentrated in even degrees, the
spectral sequence collapses at Ez. So H*(0Sp(n);Fy) = I'(yai—2 : 1 <1 < n)
as a coalgebra [8]. Now we solve algebra extension problems by the Steenrod
actions. By the change of bases, we may get

o 2% -1
v, = PP N ygy) = <2i 3 l)yp(4i— 2) = Yp(4i-2)-

From this relation, H*(Q2Sp(n);F,) is isomorphic as an algebra to

n—1

Fplype (y2i) 1@ > 0,1 <i < [
2n—1

],iodd,i % 0mod p]/(Ype (y2:))™

®F(y2i:[ ] <1< 2n-1,io0dd,i # Omodp),

where m is a number such that i(m —1) < 2n—1 < im. Note that even though
2[22-1] # [#22], we have that {j: [#22] < 2(27 - 1)} = {j : [2n-1] < 25 - 1)
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Consider the Eilenberg-Moore spectral sequence converging to H,(2*Sp(n); F,)
with

E, = Extyeospnyr,) Fp, Fp)
2n —
& E(Qp_122z 1:0 Z 07 [

1
] <i<2n—1,i0dd,i # 0modp)
n—1

2
F,[BQ%_ 12201 :a>o,[ ]<i_<_2n—1,z’odd,i$é0modp]

®E(Q_21:a20,1<i< [2"” 1],iodd,i # 0mod p)

o —1
Fy[Q3 1) Waim—2 1 @ > 0,1 <i < [ n ],z’odd,i;éOmodp].

By Theorem 2.1, the spectral sequence collapses at the Eo-term. After resorting,
as an algebra H,(22Sp(n);F,) is

E(Q3-122i-1:a>0,1 <1< 2n—1,i0dd,: #Z Omod p)

2n —1
O, [BQE_ 221 : a > 0, [

] <i<2n—1,i0dd,i % 0modp]
2n—1

By [Q3p1)apiz @ > 0, [ =] <i <2n—1,i=0modp].

Note that under the condition i(m — 1) < 2n — 1 < im, we have

—1
(2im—2:1<i <[22 0dd,i £ 0modp)

-1
= {opi—2: [

]<i<2n-1,i=0modp}.
Consider the Eilenberg-Moore spectral sequence converging to H, (23Sp(n); Fp)
with
E? = Cotor™!»(¥'SPmiF) (| F,)
= By [Q5p—1)(Q20p—1) (1] ¥ [-P]) : @ 2 0]

® Fp[Q5p—1)(u2i-2) 1@ > 0,1 < i < 2n —1,i0dd,i # Omod p]

2n —
® B(Qp-1BQf) 1yuiza 0,6 >0, |

1
] <i<2n—1,io0dd,i % 0modp)

on —1
By [8Q%_1BQYp1yuzi-2 : a,b > 0, [ n ] <i<2n—1,iodd,i % 0modp]

2n—1 . .
® E(Qg_ng(p_l)vgm_g 1a,b >0, [ ] <1<2n-1,7=0modp)

-1
[ﬂQa+1Q3p 1)V2pi-3 : @, b>0, [ np ] <i<2n—1,i=0modp].
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By Theorem 2.1, the spectral sequence also collapses at the E2-term and we get
the desired result. ]

3. Serre spectral sequence for H,(BG;(Sp(n));Fp,)

Now we study the Serre spectral sequence converging to the mod p homology
of the classifying space of the Sp(n) gauge group for the evaluation fibration

Q3 5p(n) - Mapy(S*, BSp(n)) = BSp(n).

THEOREM 3.1: Let p{'p5?---p}" be the prime factorization of 2n + 1. If an
odd prime p is not equal to any p; for i = 1,...,l, then every transgression
dn: Eno — Eg,_ is trivial for the Serre spectral sequence converging to
H,(Mapy(S*, BSp(n));F,) for the evaluation fibration.

Proof: 'We have the following morphisms of fibrations:

Q3 Sp(n) ———— Mapy(S*, BSp(n)) ——— BSp(n)

Q3Sp(n + 1) — Mapy(S*, BSp(n +1)) — BSp(n +1)

o

0} Sp —————> Map(S*, BSp) ——— BSp

From the Serre spectral sequence for Q3 Sp(n) = Q3 Sp(n + 1) — Q354743
(tn)s: H(Q3Sp(n); Fp) — H(QESp(n + 1);F,) is injective for all * < 4n — 1.
Similarly, (tnt1)s: He (3 Sp(n + 1);F,) = Ho(Q3Sp(n + 2);F,) is injective for
all x < 4n + 3, and so on. Hence t,: H,(Q3Sp(n);F,) — H,(QBSp;Fp) is
injective for all * < 4n — 1, that is, every element in H, (€3 Sp(n);F,) whose
degree is less than 4n — 1 becomes stably an element in H,(Q}Sp;F,). Note
that H,(BSp(n);F,) = I'(z4,%s,...,%4n) as a coalgebra is concentrated in
even degrees. Consider the Gysin sequence of the spherical fibration Sintd
BSp(n) == BSp(n + 1):

o> Hjsn—3(BSp(n+1); F,) = H; (BSp(n); F,) &5 H, (BSp(n+1); E,) = - - -

Then (in)« is injective for each n > 1 and * > 0. Hence i,: H.(BSp(n);Fp) —
H,.(BSp;F,) is injective for all * > 0.



172 Y. CHOI Isr. J. Math.

Since H,(QSp;F,) and H,(BSp;F,) are concentrated in even degrees for
odd primes p, the Serre spectral sequence for the bottom row fibration collapses
at Fy. Since t,: H,(Q3Sp(n); F,p) = H,.(Q2Sp; F,) is injective for all * < 4n—1,
by naturality every element in H, (2} Sp(n); F,) whose degree is less than 4n—1
cannot be the target of any transgression of the Serre spectral sequence for the
first row fibration. That is, dg;(z4;) =0 for 1 < ¢ < n —1. Now we claim that
dan(an) = 0. If dsn(24n) is not trivial, then the transgression from it is the
first non-trivial differential. Since the target of the first non-trivial differential is
primitive in such a spectral sequence, dy4,,(Z45,) is a primitive element of degree
4n -1 in H(Q3Sp(n); Fp).

Now we check odd degree primitive elements in H.(Q32Sp(n);F,) from
Theorem 2.2. The element vg,,—3 is defined for odd ¢ satisfying the condi-
tion that [(2n — 1)/p] < i < 2n— 1,7 = Omodp. Since 2n +1 = pi*p3? - -p
and p is not equal to any p; for i = 1,...,1, the number pi"'py* -- - p;"* /p cannot
be an integer. Moreover, [(p{'ps?---p* — 2)/p] = [py'py* -~ p;"/p], that is,
[(2n —1)/p] = [(2n + 1)/p]. So

[vapi-z| > 2p(2n+1)/p—-3=4n-1.

Now we consider the element us;_» which is defined for odd ¢ with [(2n—1)/p] <
1< 2n—1,7 # 0modp. We divide into two cases.
(Case 1) p < 2n+ 1. Since [(2n — 1)/p] > 1 and [(2n — 1)/p] = [(2n + 1) /p],

'BQz(p_l)UQi_zl >p22n+1)/p-2)+2(p—-1)—1=4n~1.
(Case 2) p > 2n+ 1. Then (2n — 1)/p < 1. Since [(2n —1)/p] < i <
2n —1,50dd,7 # Omodp, i can be 1. |fQy(p—1)uo| = 2p — 3. Since p > 2n + 1,
|BQa(p—1ytt0] > 2(2n+1) =3 =4n— 1.

Hence there is no primitive element of dimension 4n — 1 in H,(Q3Sp(n); F,) for
p which is not equal to any p; for 1 = 1,...,l. Therefore 7(z4,) = 0. Consider
the following morphism of fibration sequences up to homotopy:

Sp(n) * BSp(n)

- |

038p(n) ——> Map;,(S*, BSp(n)) — BSp(n)

From the above argument, (J;).: H.(Sp(n); Fp) = H.(Q}Sp(n); Fp) is a zero
map, so that every transgression dy;: Hy(BSp(n);F,) = Hi—1(Q3Sp(n); Fy)
for t > 1 is trivial. 1
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Remarks: 1. For p = 2, every transgression is also trivial for the Serre spectral
sequence converging to H,(Mapy(S*, BSp(n));F2) for the evaluation fibration

[5]-

2. For Sp(1), consider the following sequence of fibrations up to homotopy:
<= Sp(l) = Q3Sp(1) — Map(S*, BSp(1)) = BSp(1) — ---.

We have [Sp(1),22Sp(1)] = m6(S3) = Z/(3) ® Z/(4). Hence localized at
p > 3, any map f: Sp(1) — 23Sp(1) is null homotopic. From this, the Serre
spectral sequence converging to H.(Mapy (S, BSp(1));F,) for the evaluation
fibration collapses at the E?-term for all p > 3. Hence if p # 3, there is an
isomorphism of F,-vector spaces for all integers k&

H.(BGx(Sp(1);F,) = H.(2Sp(1);F,) ® H.(BSp(1)iF).
3. From the proof of Theorem 3.1, we obtain that
g Ho(Mapi(S*, BSp(n)); Fp) = H.(BSp(n); F,)

is onto. But we do not know whether the fiber Q3 Sp(n) is totally nonhomologous
to zero in the total space with respect to a field F,.

4. Non-collapsing case

Now we turn to the case for the prime p = 2n + 1. Consider the exact sequence
of homotopy groups:

(

“or~ Tan—1(Sp(n)) %an(QZSP(”)) — Tn—1(Mapi(S*, BSp(n)) = ---.

Then the boundary map (Or)z can be expressed in terms of the Samelson
product <, > as follows [13, 15]. For a in m4,—1(Sp(n), we have

(1) (O)pa = £k{a, B)
where § generates m3(Sp(n)) [13, Proposition 2.1]. We recall the following fact.
PROPOSITION 4.1 ([4, Theorem 2]): The kernel of the homomorphism
Tan-1(SP(n)) ® Tam-1(Sp(M)) = Tantam-2(Sp(n +m — 1))
a®fr (a,f)
induced by the Samelson product {,) is precisely divisible by kym [knkm where

b = (2r — 1)!12, r even,
"1 @r-1), rodd
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Since 7 (Sp) = mp(Sp(n)) for n > (k — 1)/4 from the stability [3], we have
Tan-1(SP(n)) = T4n-1(Sp(m +n - 1))

and
Tam—1(Sp(M)) = mgm-1(Sp(m +n — 1)).

Hence for m = 1 we have

Tan—1(Sp(n)) @ m3(Sp(n)) =  Tant2(Sp(n))
a®p — (a, B).

By Proposition 4.1, the order of the element {e, 8} is n(2n + 1) for even n and
(2n + 1)4n for odd n for generators a, f.

Hence if p = 2n + 1, then y: Sp(n)) — QﬁSp(n)(p) is not null homotopic
for k # 0 mod p by (1).

Recall the p-primary component of homotopy groups of odd spheres [14,
p. 176].
PROPOSITION 4.2: Let p be an odd prime. Then we have the following.

7r2m+1+22-(p_1)_2(52m+1;p) =Z/[/(p) forl<m<i, andi=2,...,p~1.
7T2m+1+2i(p—1)—1(52m+1;p) = Z/(p) for 1 S m, and i = ]-a 27 ERRY L
Toma14k (S2™ 1 p) = 0 otherwise for k < 2p(p —1) — 2.

Now we prove the following theorem.

THEOREM 4.3: Let 2n + 1 be an odd prime. If p = 2n + 1, then we have the
following transgression:

0, k =0modp

. dn 4n —
dan: Eypo = Eyjgn_1 = {nonzero, k # Omodp

for the Serre spectral sequence converging to H.(Mapy(S*, BSp(n)); F,) of the
evaluation fibration. Hence the Serre spectral sequence does not collapse at the
E?-term for k # Omodp.

Proof:  Sp(n) is p-regular if and only if 2n < p [12, p. 293]. Soif p = 2n + 1,
Sp(n) is p-regular. So there is a p-equivalence

Sp(n) ~p S¥ x 87 x .- x §4n7L,

Hence localized at p, 9: S® x 7 x++-x §47=1 -5 03§23 x B35 x ... x N3§4n~1

is not null homotopic for £ Z 0 mod p by the above argument.
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Consider m4;_ (238471 p) = mg42(S%~1;p) for 1 < 4,5 < n. Then by
Proposition 4.2, we have

i Z/(p), fi=nandj=1,
. 45-1. ) =
Ta42(5775p) { 0, otherwise for 1 <i,j < n.

Hence the map

Ok | gan—1

P10 Ok|gin-1: ST —— 353 x BS7 x - ® Q¥SIn-1EL08 63
is not null. Let k # 0 mod p and p; 00;|gin-1 = g. Then gu: man—1(S4"~1 : p) -
Tan—1 (R3S : p) is not zero. Since m (Q3S®) = Z/2Z, we have the following
fibration: _

35%(1) 5088 - K(Z/22,1).
Since man—1(K(Z/2Z,1);p) = 0, there is a map h: S*"~1 — (Q353)(1) such
that j o h = g. Consider h: S""1 - (Q3S°%)(1). Then hy: m(S*"1;p) =
7;((235%)(1); p) is an isomorphism for ¢ < 4n — 1. Note that 734:(S%;p) = 0
for 0 < ¢ < 4n — 1 by Proposition 4.2. By the mod p J. H. C. Whitehead
Theorem, we have h,: H;(S¥""1,F,) - H;((35%)(1);F,) is an isomorphism
for i < 4n — 1. That is, ha: Hsp—1(S*™ 1 F,)) = Hin o ((BS3)(1)F,) is
an isomorphism. So g.: Hyn-1(S™ L;F,) — H4n_1(Q?€S3;1Fp) is also an
isomorphism for k Z Omod p. Hence we get that

@), = 0, k = 0modp,
k/* =\ nonzero, k # Omodp.

(2)
Now we consider the Serre spectral sequence for the following fibration:
Q3 Sp(n) = Mapy(S*, BSp(n)) = BSp(n).

From the same argument of Theoremn 3.1, we have transgressions d5;, = 0 for
1 <i<n -1 and the first possible non-trivial differential is

din: Hin(BSp(n); Fy) ~ Han—1(Q}Sp(n)); Fp)-

By naturality of differentials, we have df, = (). o ds, for the following mor-
phism of fibration sequences up to homotopy:

Sp(n) —> * BSp(n)

! |

Q3 Sp(n) — Mapy (S, BSp(n)) —> BSp(n)
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From (2), we get
d = 0, k = 0mod p,
4" ™ ) nonzero, k % Omodp.

Hence the Serre spectral sequence for the evaluation fibration does not collapse
at the E%-term for k # Omodp. [ |

Remark: Let p be an odd prime greater than 2n + 1. Then by Proposition 4.2,
we have
Taipo(SY " p) =0 forall1<i,j<n.

Hence (0)4 is trivial for any integer k. So we obtain the following isomorphism
for all z > 1:

mi(Map(S*, BSp(n)); p) = m;(Q3Sp(n); p) ® mi(BSp(n); p)
2 mi43(Sp(n); p) ® mi—1(Sp(n); p)

= @(Wi+3(54j—1;10) ®mi1(SY71p)).
j=1
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