HOMOLOGY OF THE CLASSIFYING SPACE OF Sp(n) GAUGE GROUPS

BY

Younggi Choi*

Department of Mathematics Education, Seoul National University

Seoul 151-748, Korea

e-mail: yochoi@snu.ac.kr

ABSTRACT

We study the mod p homology of the classifying space of the gauge group associated with the principal Sp(n) bundle over the four-sphere using the Serre spectral sequence for the evaluation fibration.

1. Introduction

Let G be a compact, connected simple Lie group with the classifying space BG and let P_k be the principal bundle over S^4 classified by the map $S^4 \to BG$ of degree $k \in \mathbb{Z}$. Let $\mathcal{G}_k(G)$ denote the (full) gauge group of bundle automorphisms on P_k , that is, G-equivariant self maps of P_k covering the identity map of S^4 . The gauge group $\mathcal{G}_k(G)$ acts freely on the space of all G-equivariant maps from P_k to EG, $Map(P_k, EG)$, and its orbit space is given by the k-component of the space of maps from S^4 to BG, $Map_k(S^4, BG)$. Since $Map(P_k, EG)$ is contractible, the classifying space of $\mathcal{G}_k(G)$ is homotopy equivalent to $Map_k(S^4, BG)$. Similarly, if $\mathcal{G}_k^b(G)$ is the based gauge group which consists of base point preserving automorphisms on P_k , the classifying space of $\mathcal{G}_k^b(G)$ is homotopy equivalent to Ω_k^3G [2]. That is, we have

$$B\mathcal{G}_k(G) \simeq Map_k(S^4, BG), \quad B\mathcal{G}_k^b(G) \simeq \Omega_k^3G.$$

^{*} This work was supported by Korea Research Foundation Grant KRF-2002-041-C00032.

Received January 12, 2004

Let Sp(n) denote the symplectic group, that is, the group of $n \times n$ quaternionic unitary matrices. Many works consider classifying spaces of gauge groups associated with principal Sp(1) bundles [1, 9, 11]. In this paper we study the mod p homology of the classifying space of the gauge group associated with the principal Sp(n) bundle over S^4 using the Serre spectral sequence for the evaluation fibration.

ACKNOWLEDGEMENT: We would like to thank Fred Cohen and Mamoru Mimura for their suggestions and valuable comments.

2. Homology of $B\mathcal{G}_k^b(Sp(n))$

Let E(x) be the exterior algebra on x and $\Gamma(x)$ be the divided power Hopf algebra on x which is free on generators $\gamma_i(x)$ with the product $\gamma_i(x)\gamma_j(x) = \binom{i+j}{j}\gamma_{i+j}(x)$ and with coproduct $\Delta(\gamma_n(x)) = \sum_{i=0}^n \gamma_{n-i}(x) \otimes \gamma_i(x)$. For a (n+1)-fold loop space, there are homology operations,

$$Q_{i(p-1)}: H_q(\Omega^{n+1}X; \mathbb{F}_p) \longrightarrow H_{pq+i(p-1)}(\Omega^{n+1}X; \mathbb{F}_p),$$

defined for $0 \le i \le n$ when p = 2 and for $0 \le i \le n$, $i \equiv q$ for mod 2 when p is an odd prime, which is natural for a (n+1)-fold loop space. Let Q_i^a be the iterated operation $Q_i \cdots Q_i$ (a times) and β be the mod p Bockstein operation. We refer to [7] for the condensed treatment of these homology operations. Since $\pi_3(G) = \mathbb{Z}$ for a compact, connected simple Lie group G, $\pi_0(\Omega^3 G) = \mathbb{Z}$. Let $\Omega_0^3 G$ be the zero component of $\Omega^3 G$ and $X_{(p)}$ be the space X localized at the prime p. Note that $\Omega_0^3 G \simeq \Omega_k^3 G$ for any $k \in \mathbb{Z}$.

To get the mod p homology of $B\mathcal{G}_0^b(Sp(n))$, we compute $H_*(\Omega_0^3Sp(n);\mathbb{F}_p)$. For the computation we need the following result, which was conjectured by Choi and Yoon [6] and proved by Lin [10].

THEOREM 2.1: The Eilenberg-Moore spectral sequences for the path loop fibrations converging to the mod p (co)homology of the double and the triple loop spaces of any simply connected finite H-space collapse at the E_2 -term.

Hence by [8, Proposition 2.8], we have the following coalgebra isomorphism:

$$\operatorname{Tor}_{H^{\bullet}(\Omega G; \mathbb{F}_p)}(\mathbb{F}_p, \mathbb{F}_p) \cong H^{\bullet}(\Omega^2 G; \mathbb{F}_p),$$
$$\operatorname{Tor}_{H^{\bullet}(\Omega^2 G; \mathbb{F}_p)}(\mathbb{F}_p, \mathbb{F}_p) \cong H^{\bullet}(\Omega^3 G; \mathbb{F}_p).$$

Throughout this paper, the subscript of an element always means the degree of an element; for example, the degree of a_i is i.

THEOREM 2.2: Let p be an odd prime. Then as an algebra, $H_*(B\mathcal{G}_0^b(Sp(n)); \mathbb{F}_p)$ is isomorphic to

$$\mathbb{F}_p[Q_{2(p-1)}^a(Q_{2(p-1)}[1]*[-p]): a \ge 0]$$

$$\otimes \mathbb{F}_p[Q_{2(p-1)}^a(u_{2i-2}) : a \ge 0, 1 < i \le 2n-1, i \text{ odd}, i \not\equiv 0 \mod p]$$

$$\otimes E(Q_{p-1}^{a}\beta Q_{2(p-1)}^{b+1}u_{2i-2}:a,b\geq 0, \left[\frac{2n-1}{p}\right] < i\leq 2n-1, i \text{ odd}, i\not\equiv 0 \text{ mod } p)$$

$$\otimes \mathbb{F}_{p}[\beta Q_{p-1}^{a}\beta Q_{2(p-1)}^{b}u_{2i-2}:a,b>0,\left[\frac{2n-1}{p}\right]< i\leq 2n-1, i \text{ odd}, i\not\equiv 0 \text{ mod } p]$$

$$\otimes E(Q_{p-1}^a Q_{3(p-1)}^b v_{2pi-3} : a, b \ge 0, \left[\frac{2n-1}{p}\right] < i \le 2n-1, i \equiv 0 \mod p)$$

$$\otimes \mathbb{F}_p[\beta Q_{p-1}^{a+1} Q_{3(p-1)}^b v_{2pi-3} : a, b \ge 0, \left[\frac{2n-1}{p}\right] < i \le 2n-1, i \equiv 0 \bmod p].$$

Proof: Recall the following homology:

$$H^*(Sp(n); \mathbb{F}_p) \cong E(u_{4i-1} : 1 \le i \le n),$$

$$\mathcal{P}^a(u_{4i-1}) = (-1)^{a(p-1)/2} \binom{2i-1}{a} u_{4i-1+2a(p-1)}.$$

Consider the Eilenberg–Moore spectral sequence converging to $H^*(\Omega Sp(n); \mathbb{F}_p)$ with

$$E_{2} \cong \operatorname{Tor}_{H^{\bullet}(Sp(n);\mathbb{F}_{p})}(\mathbb{F}_{p},\mathbb{F}_{p})$$

$$\cong \operatorname{Tor}_{E(u_{4i-1}:1\leq i\leq n)}(\mathbb{F}_{p},\mathbb{F}_{p})$$

$$\cong \Gamma(y_{4i-2}:1\leq i\leq n),$$

where $y_{4i-2} = \sigma(u_{4i-1})$. Since the E_2 -term is concentrated in even degrees, the spectral sequence collapses at E_2 . So $H^*(\Omega Sp(n); \mathbb{F}_p) = \Gamma(y_{4i-2} : 1 \le i \le n)$ as a coalgebra [8]. Now we solve algebra extension problems by the Steenrod actions. By the change of bases, we may get

$$y_{4i-2}^p = \mathcal{P}^{2i-1}(y_{4i-2}) = \binom{2i-1}{2i-1} y_{p(4i-2)} = y_{p(4i-2)}.$$

From this relation, $H^*(\Omega Sp(n); \mathbb{F}_p)$ is isomorphic as an algebra to

$$\mathbb{F}_{p}[\gamma_{p^{a}}(y_{2i}) : a \ge 0, 1 \le i \le \left[\frac{2n-1}{p}\right], i \text{ odd}, i \not\equiv 0 \mod p]/(\gamma_{p^{a}}(y_{2i}))^{m} \\
\otimes \Gamma(y_{2i} : \left[\frac{2n-1}{p}\right] < i \le 2n-1, i \text{ odd}, i \not\equiv 0 \mod p),$$

where m is a number such that $i(m-1) \le 2n-1 < im$. Note that even though $2[\frac{2n-1}{p}] \ne [\frac{4n-2}{p}]$, we have that $\{j: [\frac{4n-2}{p}] < 2(2j-1)\} = \{j: [\frac{2n-1}{p}] < 2j-1\}$.

Consider the Eilenberg–Moore spectral sequence converging to $H_*(\Omega^2 Sp(n); \mathbb{F}_p)$ with

$$E_{2} \cong \operatorname{Ext}_{H^{*}(\Omega Sp(n); \mathbb{F}_{p})}(\mathbb{F}_{p}, \mathbb{F}_{p})$$

$$\cong E(Q_{p-1}^{a} z_{2i-1} : a \geq 0, \left[\frac{2n-1}{p}\right] < i \leq 2n-1, i \operatorname{odd}, i \not\equiv 0 \operatorname{mod} p)$$

$$\otimes \mathbb{F}_{p}[\beta Q_{p-1}^{a} z_{2i-1} : a > 0, \left[\frac{2n-1}{p}\right] < i \leq 2n-1, i \operatorname{odd}, i \not\equiv 0 \operatorname{mod} p]$$

$$\otimes E(Q_{p-1}^{a} z_{2i-1} : a \geq 0, 1 \leq i \leq \left[\frac{2n-1}{p}\right], i \operatorname{odd}, i \not\equiv 0 \operatorname{mod} p)$$

$$\otimes \mathbb{F}_{p}[Q_{2(p-1)}^{a} w_{2im-2} : a \geq 0, 1 \leq i \leq \left[\frac{2n-1}{p}\right], i \operatorname{odd}, i \not\equiv 0 \operatorname{mod} p].$$

By Theorem 2.1, the spectral sequence collapses at the E_2 -term. After resorting, as an algebra $H_*(\Omega^2 Sp(n); \mathbb{F}_p)$ is

$$\begin{split} &E(Q_{p-1}^{a}z_{2i-1}: a \geq 0, 1 < i \leq 2n-1, i \text{ odd}, i \not\equiv 0 \operatorname{mod} p) \\ &\otimes \mathbb{F}_{p}[\beta Q_{p-1}^{a}z_{2i-1}: a > 0, \left[\frac{2n-1}{p}\right] < i \leq 2n-1, i \text{ odd}, i \not\equiv 0 \operatorname{mod} p] \\ &\otimes \mathbb{F}_{p}[Q_{2(p-1)}^{a}w_{2pi-2}: a \geq 0, \left[\frac{2n-1}{p}\right] < i \leq 2n-1, i \equiv 0 \operatorname{mod} p]. \end{split}$$

Note that under the condition $i(m-1) \leq 2n-1 < im$, we have

$$\begin{aligned} \{2im - 2 : 1 \le i \le [\frac{2n - 1}{p}], i : \text{odd}, i \not\equiv 0 \mod p\} \\ &= \{2pi - 2 : [\frac{2n - 1}{p}] < i \le 2n - 1, i \equiv 0 \mod p\}. \end{aligned}$$

Consider the Eilenberg–Moore spectral sequence converging to $H_*(\Omega_0^3 Sp(n); \mathbb{F}_p)$ with

$$\begin{split} E^2 &\cong \operatorname{Cotor}^{H_{\bullet}(\Omega^2 Sp(n); \mathbb{F}_p)}(\mathbb{F}_p, \mathbb{F}_p) \\ &\cong \mathbb{F}_p[Q_{2(p-1)}^a(Q_{2(p-1)}[1]*[-p]): a \geq 0] \\ &\otimes \mathbb{F}_p[Q_{2(p-1)}^a(u_{2i-2}): a \geq 0, 1 < i \leq 2n-1, i \operatorname{odd}, i \not\equiv 0 \operatorname{mod} p] \\ &\otimes E(Q_{p-1}^a\beta Q_{2(p-1)}^{b+1}u_{2i-2}: a, b \geq 0, \left[\frac{2n-1}{p}\right] < i \leq 2n-1, i \operatorname{odd}, i \not\equiv 0 \operatorname{mod} p) \\ &\otimes \mathbb{F}_p[\beta Q_{p-1}^a\beta Q_{2(p-1)}^bu_{2i-2}: a, b > 0, \left[\frac{2n-1}{p}\right] < i \leq 2n-1, i \operatorname{odd}, i \not\equiv 0 \operatorname{mod} p) \\ &\otimes E(Q_{p-1}^aQ_{3(p-1)}^bv_{2pi-3}: a, b \geq 0, \left[\frac{2n-1}{p}\right] < i \leq 2n-1, i \equiv 0 \operatorname{mod} p) \\ &\otimes \mathbb{F}_p[\beta Q_{p-1}^aQ_{3(p-1)}^bv_{2pi-3}: a, b \geq 0, \left[\frac{2n-1}{p}\right] < i \leq 2n-1, i \equiv 0 \operatorname{mod} p) \\ &\otimes \mathbb{F}_p[\beta Q_{p-1}^{a+1}Q_{3(p-1)}^bv_{2pi-3}: a, b \geq 0, \left[\frac{2n-1}{p}\right] < i \leq 2n-1, i \equiv 0 \operatorname{mod} p]. \end{split}$$

By Theorem 2.1, the spectral sequence also collapses at the E^2 -term and we get the desired result.

3. Serre spectral sequence for $H_*(B\mathcal{G}_k(Sp(n)); \mathbb{F}_p)$

Now we study the Serre spectral sequence converging to the mod p homology of the classifying space of the Sp(n) gauge group for the evaluation fibration

$$\Omega_k^3 Sp(n) \to Map_k(S^4, BSp(n)) \to BSp(n).$$

THEOREM 3.1: Let $p_1^{n_1}p_2^{n_2}\cdots p_l^{n_l}$ be the prime factorization of 2n+1. If an odd prime p is not equal to any p_i for $i=1,\ldots,l$, then every transgression d_n : $E_{n,0}^n \to E_{0,n-1}^n$ is trivial for the Serre spectral sequence converging to $H_*(Map_k(S^4, BSp(n)); \mathbb{F}_p)$ for the evaluation fibration.

Proof: We have the following morphisms of fibrations:

From the Serre spectral sequence for $\Omega_k^3 Sp(n) \xrightarrow{\iota_n} \Omega_k^3 Sp(n+1) \to \Omega^3 S^{4n+3}$, $(\iota_n)_* \colon H_*(\Omega_k^3 Sp(n); \mathbb{F}_p) \to H_*(\Omega_k^3 Sp(n+1); \mathbb{F}_p)$ is injective for all * < 4n-1. Similarly, $(\iota_{n+1})_* \colon H_*(\Omega_k^3 Sp(n+1); \mathbb{F}_p) \to H_*(\Omega_k^3 Sp(n+2); \mathbb{F}_p)$ is injective for all * < 4n+3, and so on. Hence $\iota_* \colon H_*(\Omega_k^3 Sp(n); \mathbb{F}_p) \to H_*(\Omega_k^3 Sp; \mathbb{F}_p)$ is injective for all * < 4n-1, that is, every element in $H_*(\Omega_k^3 Sp(n); \mathbb{F}_p)$ whose degree is less than 4n-1 becomes stably an element in $H_*(\Omega_k^3 Sp; \mathbb{F}_p)$. Note that $H_*(BSp(n); \mathbb{F}_p) \cong \Gamma(x_4, x_8, \ldots, x_{4n})$ as a coalgebra is concentrated in even degrees. Consider the Gysin sequence of the spherical fibration $S^{4n+3} \to BSp(n) \xrightarrow{\iota_n} BSp(n+1)$:

$$\cdots \to H_{j-4n-3}(BSp(n+1); \mathbb{F}_p) \to H_j(BSp(n); \mathbb{F}_p) \xrightarrow{(i_n)_*} H_j(BSp(n+1); \mathbb{F}_p) \to \cdots$$

Then $(i_n)_*$ is injective for each $n \ge 1$ and $* \ge 0$. Hence $i_*: H_*(BSp(n); \mathbb{F}_p) \to H_*(BSp; \mathbb{F}_p)$ is injective for all $* \ge 0$.

Since $H_*(\Omega_k^3 Sp; \mathbb{F}_p)$ and $H_*(BSp; \mathbb{F}_p)$ are concentrated in even degrees for odd primes p, the Serre spectral sequence for the bottom row fibration collapses at E_2 . Since $\iota_* \colon H_*(\Omega_k^3 Sp(n); \mathbb{F}_p) \to H_*(\Omega_k^3 Sp; \mathbb{F}_p)$ is injective for all * < 4n - 1, by naturality every element in $H_*(\Omega_k^3 Sp(n); \mathbb{F}_p)$ whose degree is less than 4n - 1 cannot be the target of any transgression of the Serre spectral sequence for the first row fibration. That is, $d_{4i}(x_{4i}) = 0$ for $1 \le i \le n - 1$. Now we claim that $d_{4n}(x_{4n}) = 0$. If $d_{4n}(x_{4n})$ is not trivial, then the transgression from it is the first non-trivial differential. Since the target of the first non-trivial differential is primitive in such a spectral sequence, $d_{4n}(x_{4n})$ is a primitive element of degree 4n - 1 in $H_*(\Omega_k^3 Sp(n); \mathbb{F}_p)$.

Now we check odd degree primitive elements in $H_*(\Omega_k^3 Sp(n); \mathbb{F}_p)$ from Theorem 2.2. The element v_{2pi-3} is defined for odd i satisfying the condition that $[(2n-1)/p] < i \leq 2n-1, i \equiv 0 \mod p$. Since $2n+1=p_1^{n_1}p_2^{n_2}\cdots p_l^{n_l}$ and p is not equal to any p_i for $i=1,\ldots,l$, the number $p_1^{n_1}p_2^{n_2}\cdots p_l^{n_l}/p$ cannot be an integer. Moreover, $[(p_1^{n_1}p_2^{n_2}\cdots p_l^{n_l}-2)/p]=[p_1^{n_1}p_2^{n_2}\cdots p_l^{n_l}/p]$, that is, [(2n-1)/p]=[(2n+1)/p]. So

$$|v_{2pi-3}| > 2p(2n+1)/p - 3 = 4n - 1.$$

Now we consider the element u_{2i-2} which is defined for odd i with $[(2n-1)/p] < i \le 2n-1, i \not\equiv 0 \bmod p$. We divide into two cases.

(Case 1)
$$p < 2n + 1$$
. Since $[(2n - 1)/p] \ge 1$ and $[(2n - 1)/p] = [(2n + 1)/p]$, $|\beta Q_{2(p-1)} u_{2i-2}| > p(2(2n + 1)/p - 2) + 2(p - 1) - 1 = 4n - 1$.

(Case 2) p > 2n+1. Then (2n-1)/p < 1. Since $[(2n-1)/p] < i \le 2n-1, i \text{ odd}, i \not\equiv 0 \mod p, i \text{ can be } 1. \ |\beta Q_{2(p-1)}u_0| = 2p-3$. Since p > 2n+1,

$$|\beta Q_{2(p-1)}u_0| > 2(2n+1) - 3 = 4n - 1.$$

Hence there is no primitive element of dimension 4n-1 in $H_*(\Omega_k^3 Sp(n); \mathbb{F}_p)$ for p which is not equal to any p_i for $i=1,\ldots,l$. Therefore $\tau(x_{4n})=0$. Consider the following morphism of fibration sequences up to homotopy:

$$Sp(n) \longrightarrow * \longrightarrow BSp(n)$$

$$\downarrow \partial_k \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Omega_k^3 Sp(n) \longrightarrow Map_k(S^4, BSp(n)) \longrightarrow BSp(n)$$

From the above argument, $(\partial_k)_*$: $H_*(Sp(n); \mathbb{F}_p) \to H_*(\Omega_k^3 Sp(n); \mathbb{F}_p)$ is a zero map, so that every transgression d_{4t} : $H_{4t}(BSp(n); \mathbb{F}_p) \to H_{4t-1}(\Omega_k^3 Sp(n); \mathbb{F}_p)$ for $t \geq 1$ is trivial.

Remarks: 1. For p=2, every transgression is also trivial for the Serre spectral sequence converging to $H_*(Map_k(S^4, BSp(n)); \mathbb{F}_2)$ for the evaluation fibration [5].

2. For Sp(1), consider the following sequence of fibrations up to homotopy:

$$\cdots \rightarrow Sp(1) \rightarrow \Omega^3 Sp(1) \rightarrow Map(S^4, BSp(1)) \rightarrow BSp(1) \rightarrow \cdots$$

We have $[Sp(1), \Omega^3 Sp(1)] = \pi_6(S^3) = \mathbb{Z}/(3) \oplus \mathbb{Z}/(4)$. Hence localized at p > 3, any map $f \colon Sp(1) \to \Omega^3 Sp(1)$ is null homotopic. From this, the Serre spectral sequence converging to $H_*(Map_k(S^4, BSp(1)); \mathbb{F}_p)$ for the evaluation fibration collapses at the E^2 -term for all p > 3. Hence if $p \neq 3$, there is an isomorphism of \mathbb{F}_p -vector spaces for all integers k

$$H_*(B\mathcal{G}_k(Sp(1)); \mathbb{F}_p) \cong H_*(\Omega_k^3 Sp(1); \mathbb{F}_p) \otimes H_*(BSp(1); \mathbb{F}_p).$$

3. From the proof of Theorem 3.1, we obtain that

$$q_*: H_*(Map_k(S^4, BSp(n)); \mathbb{F}_p) \to H_*(BSp(n); \mathbb{F}_p)$$

is onto. But we do not know whether the fiber $\Omega_k^3 Sp(n)$ is totally nonhomologous to zero in the total space with respect to a field \mathbb{F}_p .

4. Non-collapsing case

Now we turn to the case for the prime p = 2n + 1. Consider the exact sequence of homotopy groups:

$$\cdots \to \pi_{4n-1}(Sp(n)) \xrightarrow{(\partial_k) \#} \pi_{4n-1}(\Omega_k^3 Sp(n)) \to \pi_{4n-1}(Map_k(S^4, BSp(n))) \to \cdots$$

Then the boundary map $(\partial_k)_{\#}$ can be expressed in terms of the Samelson product <,> as follows [13, 15]. For α in $\pi_{4n-1}(Sp(n))$, we have

(1)
$$(\partial_k)_{\#}\alpha = \pm k\langle \alpha, \beta \rangle$$

where β generates $\pi_3(Sp(n))$ [13, Proposition 2.1]. We recall the following fact.

PROPOSITION 4.1 ([4, Theorem 2]): The kernel of the homomorphism

$$\pi_{4n-1}(Sp(n)) \otimes \pi_{4m-1}(Sp(m)) \to \pi_{4n+4m-2}(Sp(n+m-1))$$

 $\alpha \otimes \beta \mapsto \langle \alpha, \beta \rangle$

induced by the Samelson product \langle , \rangle is precisely divisible by k_{n+m}/k_nk_m where

$$k_r = \begin{cases} (2r-1)!2, & r \text{ even,} \\ (2r-1)!, & r \text{ odd.} \end{cases}$$

Since $\pi_k(Sp) = \pi_k(Sp(n))$ for $n \ge (k-1)/4$ from the stability [3], we have

$$\pi_{4n-1}(Sp(n)) = \pi_{4n-1}(Sp(m+n-1))$$

and

$$\pi_{4m-1}(Sp(m)) = \pi_{4m-1}(Sp(m+n-1)).$$

Hence for m = 1 we have

$$\begin{array}{ccc} \pi_{4n-1}(Sp(n)) \otimes \pi_3(Sp(n)) & \to & \pi_{4n+2}(Sp(n)) \\ \alpha \otimes \beta & \mapsto & \langle \alpha, \beta \rangle. \end{array}$$

By Proposition 4.1, the order of the element $\langle \alpha, \beta \rangle$ is n(2n+1) for even n and (2n+1)4n for odd n for generators α, β .

Hence if p = 2n + 1, then $\partial_k : Sp(n)_{(p)} \to \Omega_k^3 Sp(n)_{(p)}$ is not null homotopic for $k \not\equiv 0 \mod p$ by (1).

Recall the p-primary component of homotopy groups of odd spheres [14, p. 176].

PROPOSITION 4.2: Let p be an odd prime. Then we have the following.

$$\begin{split} \pi_{2m+1+2i(p-1)-2}(S^{2m+1};p) &= \mathbb{Z}/(p) \quad \text{for } 1 \leq m < i, \text{ and } i = 2, \dots, p-1. \\ \pi_{2m+1+2i(p-1)-1}(S^{2m+1};p) &= \mathbb{Z}/(p) \quad \text{for } 1 \leq m, \text{ and } i = 1,2,\dots, p-1. \\ \pi_{2m+1+k}(S^{2m+1};p) &= 0 \text{ otherwise} \quad \text{for } k < 2p(p-1)-2. \end{split}$$

Now we prove the following theorem.

THEOREM 4.3: Let 2n + 1 be an odd prime. If p = 2n + 1, then we have the following transgression:

$$d_{4n}: E_{4n,0}^{4n} \to E_{0,4n-1}^{4n} = \begin{cases} 0, & k \equiv 0 \operatorname{mod} p \\ \operatorname{nonzero}, & k \not\equiv 0 \operatorname{mod} p \end{cases}$$

for the Serre spectral sequence converging to $H_*(Map_k(S^4, BSp(n)); \mathbb{F}_p)$ of the evaluation fibration. Hence the Serre spectral sequence does not collapse at the E^2 -term for $k \not\equiv 0 \bmod p$.

Proof: Sp(n) is p-regular if and only if $2n \le p$ [12, p. 293]. So if p = 2n + 1, Sp(n) is p-regular. So there is a p-equivalence

$$Sp(n) \simeq_p S^3 \times S^7 \times \cdots \times S^{4n-1}$$
.

Hence localized at p, $\partial_k : S^3 \times S^7 \times \cdots \times S^{4n-1} \to \Omega_k^3 S^3 \times \Omega^3 S^7 \times \cdots \times \Omega^3 S^{4n-1}$ is not null homotopic for $k \not\equiv 0 \bmod p$ by the above argument.

Consider $\pi_{4i-1}(\Omega^3 S^{4j-1}; p) = \pi_{4i+2}(S^{4j-1}; p)$ for $1 \leq i, j \leq n$. Then by Proposition 4.2, we have

$$\pi_{4i+2}(S^{4j-1}; p) = \begin{cases} \mathbb{Z}/(p), & \text{if } i = n \text{ and } j = 1, \\ 0, & \text{otherwise for } 1 \le i, j \le n. \end{cases}$$

Hence the map

$$p_1 \circ \partial_k|_{S^{4n-1}}: S^{4n-1} \xrightarrow{\partial_k|_{S^{4n-1}}} \Omega_k^3 S^3 \times \Omega^3 S^7 \times \cdots \otimes \Omega^3 S^{4n-1} \xrightarrow{p_1} \Omega_k^3 S^3$$

is not null. Let $k \not\equiv 0 \bmod p$ and $p_1 \circ \partial_k|_{S^{4n-1}} = g$. Then $g_\# \colon \pi_{4n-1}(S^{4n-1} : p) \to \pi_{4n-1}(\Omega_k^3 S^3 : p)$ is not zero. Since $\pi_1(\Omega_k^3 S^3) = \mathbb{Z}/2\mathbb{Z}$, we have the following fibration:

$$(\Omega_k^3 S^3)\langle 1 \rangle \xrightarrow{j} \Omega_k^3 S^3 \to K(\mathbb{Z}/2\mathbb{Z}, 1).$$

Since $\pi_{4n-1}(K(\mathbb{Z}/2\mathbb{Z},1);p)=0$, there is a map $h\colon S^{4n-1}\to (\Omega_k^3S^3)\langle 1\rangle$ such that $j\circ h=g$. Consider $h\colon S^{4n-1}\to (\Omega_k^3S^3)\langle 1\rangle$. Then $h_\#\colon \pi_i(S^{4n-1};p)\to \pi_i((\Omega_k^3S^3)\langle 1\rangle;p)$ is an isomorphism for $i\le 4n-1$. Note that $\pi_{3+i}(S^3;p)=0$ for 0< i< 4n-1 by Proposition 4.2. By the mod p J. H. C. Whitehead Theorem, we have $h_*\colon H_i(S^{4n-1};\mathbb{F}_p)\to H_i((\Omega_k^3S^3)\langle 1\rangle;\mathbb{F}_p)$ is an isomorphism for $i\le 4n-1$. That is, $h_*\colon H_{4n-1}(S^{4n-1};\mathbb{F}_p)\to H_{4n-1}((\Omega_k^3S^3)\langle 1\rangle;\mathbb{F}_p)$ is an isomorphism. So $g_*\colon H_{4n-1}(S^{4n-1};\mathbb{F}_p)\to H_{4n-1}(\Omega_k^3S^3;\mathbb{F}_p)$ is also an isomorphism for $k\not\equiv 0$ mod p. Hence we get that

(2)
$$(\partial_k)_* = \begin{cases} 0, & k \equiv 0 \bmod p, \\ \text{nonzero}, & k \not\equiv 0 \bmod p. \end{cases}$$

Now we consider the Serre spectral sequence for the following fibration:

$$\Omega_k^3 Sp(n) \to Map_k(S^4, BSp(n)) \to BSp(n).$$

From the same argument of Theorem 3.1, we have transgressions $d_{4i}^k = 0$ for $1 \le i \le n-1$ and the first possible non-trivial differential is

$$d_{4n}^k$$
: $H_{4n}(BSp(n); \mathbb{F}_p) \to H_{4n-1}(\Omega_k^3 Sp(n)); \mathbb{F}_p)$.

By naturality of differentials, we have $d_{4n}^k = (\partial_k)_* \circ d_{4n}$ for the following morphism of fibration sequences up to homotopy:

$$\begin{array}{c|c} Sp(n) & \longrightarrow * & \longrightarrow BSp(n) \\ & \downarrow & & \parallel \\ & \Omega_{k}^{3}Sp(n) & \longrightarrow Map_{k}(S^{4}, BSp(n)) & \longrightarrow BSp(n) \end{array}$$

From (2), we get

$$d_{4n}^k = \begin{cases} 0, & k \equiv 0 \mod p, \\ \text{nonzero}, & k \not\equiv 0 \mod p. \end{cases}$$

Hence the Serre spectral sequence for the evaluation fibration does not collapse at the E^2 -term for $k \not\equiv 0 \mod p$.

Remark: Let p be an odd prime greater than 2n+1. Then by Proposition 4.2, we have

$$\pi_{4i+2}(S^{4j-1}; p) = 0$$
 for all $1 \le i, j \le n$.

Hence $(\partial_k)_{\#}$ is trivial for any integer k. So we obtain the following isomorphism for all $i \geq 1$:

$$\pi_{i}(Map(S^{4}, BSp(n)); p) \cong \pi_{i}(\Omega^{3}Sp(n); p) \oplus \pi_{i}(BSp(n); p)$$

$$\cong \pi_{i+3}(Sp(n); p) \oplus \pi_{i-1}(Sp(n); p)$$

$$\cong \bigoplus_{j=1}^{n} (\pi_{i+3}(S^{4j-1}; p) \oplus \pi_{i-1}(S^{4j-1}; p)).$$

References

- [1] S. Akbulut, On universal relations in gauge theory, Transactions of the American Mathematical Society **348** (1996), 1329-1355.
- [2] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philosophical Transactions of the Royal Society of London, Series A 308 (1982), 523-615.
- [3] R. Bott, The stable homotopy of the classical Lie groups, Annals of Mathematics **70** (1959), 313–337.
- [4] R. Bott, A note on the Samelson product in the classical groups, Commentarii Mathematici Helvetici **34** (1960), 249-256.
- [5] Y. Choi, On the mod 2 homology of Sp(n) instantons and the classifying space of the gauge group, Bulletin of the Australian Mathematical Society 55 (1997), 503-512.
- [6] Y. Choi and S. Yoon, Homology of the double and the triple loop spaces of E_6 , E_7 , and E_8 , Manuscripta Mathematica 103 (2000), 101-116.
- [7] F. R. Cohen, T. Lada and J. P. May, The homology of iterated loop spaces, Lecture Notes in Mathematics 533, Springer, Berlin, 1976.
- [8] R. Kane, On loop spaces without p torsion, Pacific Journal of Mathematics 60 (1975), 189-201.

- [9] A. Kono and S. Tsukuda, 4-manifolds X over BSU(2) and the corresponding homotopy types Map(X, BSU(2)), Journal of Pure and Applied Algebra 151 (2000), 227–237.
- [10] J. P. Lin, On the collapses of certain Eilenberg-Moore spectral sequence, Topology and its Applications 132 (2003), 29-35.
- [11] G. Masbaum, On the cohomology of the classifying space of the gauge group over some 4-complexes, Bulletin de la Société Mathématique de France 119 (1991), 1-31.
- [12] J.-P. Serre, Groupes d'homotopie et classes de groupes abeliens, Annals of Mathematics 58 (1953), 258-294.
- [13] W. A. Sutherland, Function spaces related to gauge groups, Proceedings of the Royal Society of Edinburgh. Section A 121 (1992), 185–190.
- [14] H. Toda, Composition methods in homotopy groups of spheres, Annals of Mathematics Studies, No. 49, Princeton University Press, Princeton, N.J., 1962.
- [15] G. W. Whitehead, On products in homotopy groups, Annals of Mathematics 47 (1946), 460-475.